1 形状偏差の使い方1
5th STEPでは、寸法と幾何特性の違いを知り、加工によって形が崩れる原因や計測の原理、データムの記入法と幾何特性の公差領域について学んだ。
6th STEPでは、具体的な幾何特性14種類について、その解釈と記入テクニックについて解説する。
第1回は、14種類の幾何特性のうち形状偏差に分類される「真直度」と「平面度」について説明する。
形状偏差
形状偏差とは、「対象となる形体が、平面や線など、幾何学的に正しい形状を表す偏差の許容値内にあるかを規定する」と定義される。
また、幾何公差の分類の中で、唯一、単独形体と呼ばれ、データムを参照しないことが特徴である。
形状偏差には、次の六つの幾何特性がある。
- 真直度
- 平面度
- 真円度
- 円筒度
- 線の輪郭度
- 面の輪郭度
今回は、上記のうち、真直度と平面度について説明する。
1.真直度
真直度とは、「直線形体の幾何学的に正しい直線からのひらきの許容値」と定義される。
つまり、真直度の評価対象となる形体は、「1本の直線」と認識すればよい。
真直度を適用する公差領域は、次の3種類である。
- 2本の直線間の領域(2次元平面)
- 円柱の領域(3次元空間)
- 角柱の領域(3次元空間)
真直度の図面指示例を見てみよう。
1) 円筒軸の真直度(母線指示)
円筒軸の母線に真直度を指示する場合、直径の寸法線と指示線の矢は外し、幾何公差値にφは付けない(図1)。
図1
円筒軸の真直度指示例(母線指示)
公差領域は、赤い領域になる(図2)。このとき、軸の回転方向の位置は任意である。
図2
円筒軸の母線の真直度公差領域
真円度測定機を使った場合の円筒軸の真直度(母線)計測イメージを写真1に示す。
円筒軸の任意の1本の母線を測定する。
※本例は一例であり、他の計測方法も存在する。
写真1
円筒軸の真直度(母線)の計測イメージ
2)円筒軸の真直度(中心線指示)
円筒軸の中心線に真直度を指示する場合、直径の寸法線に指示線の矢を当て、幾何公差値にφを付ける(図3)。
図3
円筒軸の真直度指示例(中心線指示)
公差領域は、赤い領域になる(図4)。
図4
円筒軸の中心線の真直度公差領域公差記入枠の要素
真円度測定機を使った場合の円筒軸の真直度(中心線)計測イメージを写真2に示す。
円筒軸の180度対向する任意の2本の母線からその平均値となる中心線を計算によって求める。
※本例は一例であり、他の計測方法も存在する。
写真2
円筒軸の真直度(中心線)の計測イメージ
次に、レアなケースであるが、平らな面の表面に母線の真直度を指示した例を見てみよう。
平面上の真直度(母線指示)
平面上の母線に真直度を指示する場合、高さや幅の寸法線と指示線の矢は外し、幾何公差値にφは付けない(図5)。
図5
平面上の真直度指示例(母線指示)
公差領域は、赤い領域になる(図6)。このとき、測定する位置は任意である。
図6
平面上の母線の真直度交差領域
3次元測定機を使った場合の平面上の真直度(母線)計測イメージを写真3に示す。
1本の直線となるよう平面上の任意の多数点を測定する。
※本例は一例であり、他の計測方法も存在する。
写真3
平面上の真直度(母線)の計測イメージ
本ページ上のコンテンツを利用する際は、大塚IDによるログインが必要です。
ログイン
大塚ID新規登録(無料)大塚IDとは